
Dynamic	Parallelism	Performance	Evaluation	on	Image	
Segmentation	Algorithms

Daniel	Goldstein,	Julian	Gutierrez,	goldstein.d@husky.neu.edu
Northeastern	University	Computer	Architecture	Research	Laboratory,	Northeastern	University,	Boston,	MA

Undergraduate
Category:	Engineering	and	Technology
Degree	Seeking:	BS	in	Computer	Science	and	Mathematics
Abstract	ID#	1548

Opportunity
Abstract
• CPU	speeds	are	reaching	a	plateau
• Parallel	computing	through	GPUs	is	a	

method	for	achieving	faster	computing	
speeds

• We	compare	CPU	and	GPU	parallelization	
to		analyze	impact	of	dynamic	parallelism	
in	image-processing	algorithms

References:	Gutierrez,	J.,	Nina-Paravecino,	F.,	&	Kaeli,	D.	(2016,	November).	A	fast	level-set	segmentation	algorithm	for	image	processing	designed	for	parallel	
architectures.	In Proceedings	of	the	Sixth	Workshop	on	Irregular	Applications:	Architectures	and	Algorithms (pp.	66-69).	IEEE	Press.
Lambert,	F.	"Tesla	Is	About	To	Increase	Its	Lead	In	Semi-Autonomous	Driving	W/	‘Tesla	Vision’:	Computer	Vision	Based	On	NVIDIA’S	Parallel	Computing". Electrek.	N.p.,	
2017.	Web.	20	Mar.	2017.
Soulan,	S.	"In-Line	Etching	Process	Control	Using	Dynamic	Scatterometry". Research	Gate.	N.p.,	2007.	Web.	18	Mar.	2017.

Approach
Algorithm	Modifications
• Largest	factors	in	performance	are:	size	of	the	image,	number	of	objects,	and	
the	complexity	of	the	objects

• Original	algorithm	employ’s	dynamic	parallelism
• A	master	kernel	on	the	GPU	calls	subsequent	kernels	that	
perform	the	curve	evolution	(shown	on	left)

• Reconfigure	the	master	kernel	so	that	it	runs	on	the	CPU,	entirely	removing	
dynamic	parallelism

• Kernel	is	constructed	into	a	for-loop	on	the	CPU	side	which	is	
parallelized	using	the	OpenMP	runtime	(shown	on	right)

• No	longer	any	CUDA	kernels	spawning	other	kernels
• Adapt	master	kernel	grid	size	to	compare	using	one	block	with	one	thread	
per	object	vs	one	block	per	object	with	one	thread	each

Data/Results

Kernel	Execution	Analysis
• Twenty	trials	were	run	for	each	sample	image	for	the	original	and	modified	
algorithm

Impact

Conclusion
• Dynamic	parallelism	proved	to	be	the	most	effective	for	images	of	multiple	or	
an	unknown	number	of	objects

• CPU-GPU	implementation	would	be	best	for	more	intricate	images	of	one	
object

• Results	can	be	extrapolated	to	other	applications	run	on	parallel	hardware
• Further	research	would	need	to	be	done	to	conclude	if	these	results	remain	
consistent	across	different	GPU	architectures

Value	Proposition
• This	project	is	unique	because	it

• combines	CUDA	parallelism	and	OpenMP,	two	different	
environments	that	serve	similar	purposes

• found	optimized	paths	to	parallelization,	an	underexplored	field	
of	comparison

• This	experiment	solves	the	problem	of	finding	the	best	implementations	to	
parallelize	algorithms

Image-Segmentation	Applications
• Cancer	radiation	theory
• Medical	image	processing
• Border	security
• Self-driving	cars	

• Cuda-opt	performed	better	on	images	with	multiple	objects,	e.g.	coins	and	
synthetic,	while	CPU-GPU	implementation	was	faster	for	single-object	images

• For	multiple-object	images,	CPU-GPU	implementation	experienced	between	
17%-172%	slower	times

• Large	improvement	in	fractal	image	is	largely	due	to	the	overhead	required	by	
the	large	number	of	atomic	operations	necessary	in	the	original	algorithm	
that	were	removed	in	the	modified	algorithm

• Similar	behavior	observed	when	run	on	an	NVIDIA	Pascal	GTX	1080

Goal
• Compare	dynamic	parallelism	in	CUDA	to	a	split	CPU-GPU	parallelization	to	
see	which	method	is	fastest	for	a	Level-Set	Segmentation	algorithm

Evolution	of	a	fractal	test	image	for	the	Level-Set	Segmentation	Algorithm

GPU	Processing	Capabilities	vs	CPU

Average	Kernel	Execution	Time	for	Cuda-Opt	and	Cuda-Opt-NoDP

Master	Kernel	Configuration	on	the	Dynamic	Parallelism	and	CPU-GPU	Algorithms

NVPROF	Timeline	Between	Step	2	Iterations	in	DP		and	CPU-GPU	Algorithm	for	Fractal	Test	Image


